首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11909篇
  免费   1299篇
  国内免费   1756篇
测绘学   1466篇
大气科学   935篇
地球物理   929篇
地质学   3749篇
海洋学   1331篇
天文学   5277篇
综合类   634篇
自然地理   643篇
  2024年   26篇
  2023年   88篇
  2022年   285篇
  2021年   321篇
  2020年   346篇
  2019年   369篇
  2018年   282篇
  2017年   361篇
  2016年   374篇
  2015年   408篇
  2014年   594篇
  2013年   748篇
  2012年   730篇
  2011年   807篇
  2010年   825篇
  2009年   1106篇
  2008年   1063篇
  2007年   967篇
  2006年   884篇
  2005年   788篇
  2004年   673篇
  2003年   580篇
  2002年   430篇
  2001年   396篇
  2000年   322篇
  1999年   274篇
  1998年   203篇
  1997年   92篇
  1996年   81篇
  1995年   69篇
  1994年   75篇
  1993年   85篇
  1992年   33篇
  1991年   36篇
  1990年   36篇
  1989年   26篇
  1988年   26篇
  1987年   12篇
  1986年   20篇
  1985年   22篇
  1984年   21篇
  1983年   15篇
  1982年   16篇
  1981年   6篇
  1980年   13篇
  1979年   2篇
  1978年   6篇
  1977年   15篇
  1954年   2篇
  1875年   1篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
991.
Hydrogen peroxide (H2O2) has been suggested as a possible oxidizer of the martian surface. Photochemical models predict a mean column density in the range of 1015-1016 cm−2. However, a stringent upper limit of the H2O2 abundance on Mars (9×1014 cm−2) was derived in February 2001 from ground-based infrared spectroscopy, at a time corresponding to a maximum water vapor abundance in the northern summer (30 pr. μm, Ls=112°). Here we report the detection of H2O2 on Mars in June 2003, and its mapping over the martian disk using the same technique, during the southern spring (Ls=206°) when the global water vapor abundance was ∼10 pr. μm. The spatial distribution of H2O2 shows a maximum in the morning around the sub-solar latitude. The mean H2O2 column density (6×1015 cm−2) is significantly greater than our previous upper limit, pointing to seasonal variations. Our new result is globally consistent with the predictions of photochemical models, and also with submillimeter ground-based measurements obtained in September 2003 (Ls=254°), averaged over the martian disk (Clancy et al., 2004, Icarus 168, 116-121).  相似文献   
992.
993.
Science Requirements on Future Missions and Simulated Mission Scenarios   总被引:4,自引:0,他引:4  
The science requirements on future gravity satellite missions, following from the previous contributions of this issue, are summarized and visualized in terms of spatial scales, temporal behaviour and accuracy. This summary serves the identification of four classes of future satellite mission of potential interest: high-altitude monitoring, satellite-to-satellite tracking, gradiometry, and formation flights. Within each class several variants are defined. The gravity recovery performance of each of these ideal missions is simulated. Despite some simplifying assumptions, these error simulations result in guidelines as to which type of mission fulfils which requirements best.  相似文献   
994.
995.
996.
Moist convective storms constitute a key aspect in the global energy budget of the atmospheres of the giant planets. Among them, Saturn is known to develop the largest scale convective storms in the Solar System, the Great White Spots (GWS) which occur rarely and have been detected once every 30 years approximately. On the average, Saturn seems to show much less convective storms than Jupiter with smaller size and reduced frequency and intensity. Here we present detailed simulations of the onset and development of storms at the Equator and mid-latitudes of Saturn. These are the regions where most of the recent convective activity of the planet has been observed. We use a 3D anelastic model with parameterized microphysics (Hueso and Sánchez-Lavega, 2001, Icarus 151, 257) studying the onset and evolution of water and ammonia moist convective storms up to sizes of a few hundred km. Water storms, while more difficult to initiate than in Jupiter, can be very energetic, arriving to the 150 mbar level and developing vertical velocities on the order of 150 m s−1. Ammonia storms develop easier but with a much smaller intensity unless very large abundances of ammonia (10 times solar) are present in Saturn's atmosphere. The Coriolis forces play a major role in the morphology and properties of water based storms.  相似文献   
997.
998.
999.
1000.
The thin atmosphere of Neptune's moon Triton is dense enough to ablate micrometeoroids as they pass through. A combination of Triton's orbital velocity around Neptune and its orbital velocity around the Sun gives a maximum meteoroid impact velocity of approximately 19 km s−1, sufficient to heat the micrometeoroids to visibility as they enter. The ablation profiles of icy and stony micrometeoroids were calculated, along with the estimated brightness of the meteors. In contrast to the terrestrial case, visible meteors would extend very close to the surface of Triton. In addition, the variation in the meteoroid impact velocity as Triton orbits Neptune produces a large variation in the brightness of meteors with orbital phase, a unique Solar System phenomenon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号